

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 693 (2008) 1664-1673

www.elsevier.com/locate/jorganchem

Coupling of terminal alkynes by $RuHXL_2$ (X = Cl or N(SiMe_3)₂, L = PⁱPr₃)

Joo-Ho Lee, Kenneth G. Caulton*

Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States

Received 14 November 2007; received in revised form 7 December 2007; accepted 7 December 2007 Available online 15 December 2007

Abstract

The compounds RuL_2HX , where $L = P'P_3$ and X = Cl or $N(SiMe_3)_2$, are catalyst precursors for dimerization of terminal alkynes to enynes and also to cumulenes at 23 °C; selectivity among these products is X-dependent, but not high. Conversion of Ru species onto the catalytic cycle was undetectably small, so alternative approaches to understanding the catalytic mechanism were employed: stoichiometric reactions, independent synthesis of candidate intermediates, and trapping with CO. These show the intermediacy of vinylidenes and vinyl compounds, and reveal conversion of cumulenes to the thermodynamically more stable enynes. © 2007 Elsevier B.V. All rights reserved.

Keywords: Terminal alkynes; Dimerization; Enynes; Cumulenes

1. Introduction

Back donation from a metal center containing no pi acid ligands has been shown to have the ability to isomerize hydrocarbons to the isomeric carbene complexes, especially from olefins (Eq. (1)). In this report, these 14e unsaturated ruthenium complexes are investigated for the reactivity with terminal alkynes, via possible intermediate vinylidene or vinyl complexes. The reaction of terminal alkynes with unsaturated divalent ruthenium or osmium complexes is known to form vinylidene complexes (Scheme 1) [7–11]. The present report

For example, the 14-electron ruthenium(II) complexes $RuXHL_2$ [1] (X = Cl, F, NH'Bu, O'Bu, or N(SiMe_3)_2, and L = P'Pr_3) were investigated for their reactivity with various vinyl compounds [2–6].

focuses especially on the reactivity of 14-electron ruthenium(II) complexes $RuXHL_2$ (X = Cl (1), or N(SiMe_3)₂ (2), and L = P^{*i*}Pr₃) with various alkynes, but under catalytic conditions, where the alkyne/Ru ratio is much greater than unity. The dimerization of terminal alkynes [12–17] has been widely studied because of its attractive, atom-economic forming of a C–C bond which serve as a useful building block for organic synthesis [18–20]. In addition,

* Corresponding author. E-mail address: caulton@indiana.edu (K.G. Caulton).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2007.12.016

the enyne could be a monomer unit to produce conjugated polymers or oligomers. However, due to the possibility of several isomers (Scheme 2), the selectivity of RCCH dimerization is the biggest challenge to be addressed [21]. Here we present the catalytic reactivity of $RuXHL_2$ with terminal alkynes together with a mechanistic study. Ruthenium has good precedent for dimerization of terminal alkynes [20,22–29].

2. Results and discussion

2.1. Reaction of 14 electron ruthenium complexes (1 and 2) and terminal alkynes, RCCH

Compound 2 is a catalyst precursor for the dimerization [12,14,30] of terminal alkynes (RC \equiv CH, R = Ph (a), ^{*i*}Bu (b), and Me₃Si (c)) with high stereoselectivities at room temperature. 2 can be prepared *in situ* by addition of LiN-(SiMe₃)₂ to 1; this conversion is complete within 30 min. A hydride triplet is observed at -20.8 ppm and a ³¹P{¹H} NMR singlet is seen at 98.8 ppm. Two doublet of virtual triplet Me groups in ^{*i*}Pr and two SiMe₃ signals indicate it has C_s symmetry.

2.2. R = Ph

When equimolar 2 and PhC \equiv CH was mixed in benzene, there is no significant change observed in ¹H NMR and ³¹P{¹H} NMR spectra of **2** over one day, although there was no signal for the terminal hydrogen of PhC==CH. Instead, when 5 equiv. of PhC==CH was applied in that reaction mixture, an AB pattern grew at 5.77 and 6.39 ppm in the ¹H NMR spectrum which corresponds *cis*-PhC(H)==C(H)CCPh (**3a**). At 20:1 mol ratio, in 3.7 h, all acetylene is converted to *cis*-[13], *trans*-[13], and 1,3-disubstituted enynes [12] and cumulene (**6**, **7**) in the mole ratio 79:14:7:trace. In addition, a small amount of styrene (\approx 3% by the ratio of integration of vinyl protons on the ¹H NMR) was seen in the spectra. Past reported dimerization of terminal alkynes has yielded mainly three kinds of enyne (Scheme 2) [12–15]. In addition, in a few cases, the formation of cumulenes (**6** and **7**) has been reported also [13–16,31,32].

2.3. $R = SiMe_3$ and CMe_3

The reactivity of **2** towards *tert*-butylacetylene and trimethylsilylacetylene were also studied (Table 1) [12–16]. To periodically monitor the dimerization, ¹H NMR and ${}^{31}P{}^{1}H$ NMR were used. Especially in the case of ¹H NMR, the signals of dimers in the vinyl region were observed, as well as for the unreacted acetylene proton.

Table 1

Dimerization of RC \equiv CH by ruthenium complexes 1 and 2 in C₆D₆

R	Complex	Product ratio 3:4:5:6	% Yield	Reaction time
Ph	1	75.9:7:17.1:trace*	100	<28 h
'Bu	1	Trace*	0	Over 2 days
Me ₃ Si	1	21.2:trace*:73.5:5.3	84	<3 days
Ph	2	78.8:13.8:7.4:trace*	100	3.7 h
'Bu	2	85.6:trace*:5.7:8.7	100	<5.5 h
Me ₃ Si	2	67.5:trace*:trace*:32.5	100	0.5 h

Reaction condition: catalyst:acetylene = 0.109 mmol:2.18 mmol, room temperature. Trace^{*}: signals cannot be distinguished because they are too weak.

R=Ph(\mathbf{a}), ^tBu(\mathbf{b}), Si Me₃(\mathbf{c})

Scheme 2.

In the case of ^{*t*}BuC=CH, **3b** (86%) was the major product (vinyl signals appeared at 5.56 ppm and 5.46 ppm with a 12.3 Hz coupling constant); a vinyl signal at 6.29 ppm, having J = 1.5 Hz, indicates formation of **5b** (6%). In addition, the signal of a vinyl proton appeared at 5.51 ppm which corresponds to cumulene (9%) [13,15,16]. Under the same conditions, Me₃SiC=CH produced mainly *cis*-enyne, **3c**, (67%) (6.22 ppm and 6.00 ppm with 14.4 Hz coupling) and a vinyl singlet at 6.37 ppm corresponding to formation of cumulene (32%) [13,14].

In the case of the cumulene, it was hard to distinguish whether it was *cis* (6) or *trans* (7) because both have the same ¹H NMR chemical shift [14]. However, since we observed that cumulenes were isomerized to 3b and 3c [14], respectively, after 2 dimerized all of 'BuC=CH or Me₃SiC=CH, this suggests that cumulenes in this case might have *cis* stereochemistry, 6b and 6c.

2.4. Catalysis with the chloride analog, 1

Since detection of metal-containing intermediates was not possible during catalysis by 2, compound 1 was studied. Because it is known that the H₂ adduct of 1 consumes 2 equiv. of terminal alkyne (liberating olefin) to produce vinylidene complex (Scheme 1) [8-12], 1 itself could also form a vinylidene compound with acetylene which could be one of possible intermediates for the dimerization. In addition dimerization of alkyne with excess terminal alkynes could be studied also, to learn the impact of lone pair electron donor ability, Cl (1) vs. N(SiMe₃)₂ (2), on catalyst performance. Dimerization of PhC=CH by 1 produced mainly *cis*-envne (3a) with 75.9% of overall product. In addition, small amounts of trans-(4a) (7%, doublet at 6.3 ppm) and 1,3-envnes (5a) (17.1%, singlets at 5.74 ppm and 5.69 ppm) were also seen in ¹H NMR. Only one vinvl signal for 4a is seen because of overlap of the other vinyl proton signal with the phenyl signals. Unexpectedly, the reaction of 1 and ^tBuC=CH did not produce any dimer except for a weak signal of envne 5b. However, dimerization of Me₃SiC=CH produced 1,3-envne (5c) as a major dimer (73.5% of total dimers). As minor products, 3c with 21.2% yield and cis-cumulene (6c) with 5.3% yield were produced by 1.

Surprisingly, over a long reaction period of dimerization by **2**, isomerization of **6b** or **6c** to the thermodynamically more stable **3b** or **3c**, respectively, occurred [14,15]. These cumulene isomerizations are slower than the rate of alkyne dimerization (Tables 1 and 2). For example, isomerization

Table 2	
Isomerization of cumulene to <i>cis</i> -disubstituted envne by complex 2	2

R	Ratio of product after isomerization 3:4:5:6	Isomerization time (h)
^t Bu	87.5:trace [*] :6.5:6	26
Me ₃ Si	100:trace [*] :trace [*]	<101

Trace*: signals cannot be distinguished because they are too weak.

of **6c** to **3c** took 101 h, but dimerization was done in 0.5 h. This isomerization is much faster for the Me₃Si case. However, this isomerization does not take place once the ¹H NMR and ³¹P{¹H} NMR signals of **2** have decayed.

Energy difference of *cis*-enyne and cumulene has been studied with Me(H)C=C=C=C(H)Me for **6b** (Fig. 1) [15] and H₃Si(H)C=C=C(H)SiH₃ for **6c** (Fig. 1) [14] which shows cumulenes have higher energy than *cis*-enynes (by 17.3 kcal/mol for Me(H)C=C=C=C(H)Me, and by 18.9 kcal/mol for H₃Si(H)C=C=C=C(H)SiH₃).

By comparing products from 1 and 2, it was found that Cl vs. $N(SiMe_3)_2$ significantly influences the reaction time as well as distribution of products; this indicates that at least one of these two anionic ligands remains attached to Ru on the catalytic cycle. For example, the fastest reaction by 2 (dimerization of Me₃SiC=CH) is the slowest reaction by 1 (over 78 h to completely dimerize 20 equiv. of acetylene). In addition, catalyst 2 produced mainly 3c, but 5c was produced only by 1 (only a trace could be seen in ${}^{1}H$ NMR spectra catalyzed by 2). In the case of the dimerization of *tert*-butylacetylene, mainly 3b was formed by 2. Unexpectedly, the reaction of ${}^{t}BuC \equiv CH$ with 1 did not produce any dimers which might be due to steric bulk around the metal center after formation of its vinylidene. The only product, seen by ¹H NMR, was trace of **5b** over 2 days. However, PhC=CH was not much influenced by change from Cl to N(SiMe₃)₂. These gave similar distribution of products, but the reaction rate was significantly faster for 2.

2.5. Mechanism

By various studies [12–16], mainly two pathways were proposed for dimerization of terminal acetylene catalyzed

Fig. 1. Relative isomer energies (kcal/mol) for E=C(Si).

Scheme 3.

by metal complexes. These differ by isomeric catalyst structures I or II (below). Studying the mechanism of alkyne dimerization catalyzed by 2 was frustrated because ¹H NMR and ³¹P{¹H} NMR spectra showed no detectable amount of ruthenium–substrate complex converted onto the catalytic cycle. Therefore catalyst 1 was chosen for mechanistic study since it reacts slower than 2 (Table 1). 1:1 mol ratio(RC=CH:1) reactions were performed to see whether vinylidene complexes, 8 (Scheme 3), were produced (Scheme 1). In reactions of all three terminal acetylenes, 8 was formed.

In all cases, species 8 were identified by triplets due to the vinylidene proton and to the hydride signal(Table 3). This suggests that isomerization to vinylidene from acetylene is favorable which implicates II (above) as on the catalytic cycle.

Therefore, the mechanism for formation of 3 and 4 in Scheme 3 is proposed. Here, stereoselectivity is determined by vinylidene conformers 10 vs. 13, which lead to 3 or 4, respectively. Since 1 and 2 both have bulky L, when R

Table 3 Chemical shift of vinylidene complexes

R	¹ H NMR	$^{31}P{^{1}H} (ppm)$	
	Hydride (ppm)	Vinylidene proton (ppm)	
Ph	-12.53	4.35	51.0
^t Bu	-13.79	2.77	50.88
Me ₃ Si	-15.09	2.41	51.00

was bulky, **3** was the major product (Table 1) since the formation of **11** is apparently more favorable than **14** [14].

Formation of 9 was demonstrated by an osmium analog [33], where reaction of OsH₃ClL₂ with 2 equiv. Me₃SiCCH produces a vinylidene compound, which is then transformed into the vinyl vinylidene compound, $OsClL_2(C(H)=C(H)SiMe_3)(=C=C(H)SiMe_3)$. In the present work, when 1 or 2 equiv. of phenyl acetylene was added to 8a in an attempt to observe any of the proposed intermediate 9, 10 or 13, not all of 8a was consumed. Even when 3 equiv. of phenyl acetylene was added, 8a was not consumed completely. Instead, dimerization of acetylene was observed, consistent with only small conversion of Ru onto the catalytic cycle. That is, k_1 limits the amount of active catalyst formed from precatalyst.

Transformation of η^3 -PhC₄HPh ligand (16, Scheme 4), an isomer of 11, has been suggested as the source of cumulene [16,30].

Compound 16 could be isomerized to cumulenyl ligand (17) by additional acetylene and then could be released as cumulene by another acetylene addition. In addition, 16 serves as an entry point into a catalytic cycle to isomerize 6 to 3 (Scheme 5). Oxidative addition of cumulene to 1 or 2 yields 17 with liberation of H_2 (Scheme 5).

Binding site exchange of the cumulenyl ligand in 17 causes isomerization from cumulenyl to enynyl ligand (17 to 16). When the second cumulene adds to 11, enyne is released.

For the formation of **5** [12,34], compound **20** is required. Two pathways are possible (Scheme 6). One is migration of

R group [33,35] with binding site exchange in Ru-vinyl group in **11** (path 1). The other possibility is from activated catalyst form I (path 2).

Another pathway to produce enyne, Scheme 7, involves species I then IV. Vinyl diacetylide compound (V) could be

Scheme 4.

formed by another acetylene addition. Enyne could be produced by migration of one of acetylide to the vinyl ligand $(V \rightarrow VI)$, followed by addition of acetylene. In this system, *trans* vinyl product is more favorable than *cis*, which contrasts to experiment.

2.6. Independent study of the mechanism: attempted synthesis of proposed intermediates

For independent study of the mechanism, synthesis of $RuClL_2(=C=CHPh)(C\equiv CPh)$ (10a, cf. 10 and 13) was

attempted through the addition of LiC=CPh to $RuCl_2L_2$ (=C=CHPh) [36,37] in benzene over 2 days. Slow exchange of Cl^- with $PhC \equiv C^-$ was observed due to the insolubility of LiC=CPh in the solvent. Characterization by NMR indicates that 16a, not 10a, is the product formed. While triplet of the vinylidene а proton $(RuCl_2L_2(=C=CHPh))$ (4.7 ppm) has disappeared. appearance of a singlet at 7.5 ppm suggests formation of vinyl ligand by migration of acetylide (PhCC⁻) to C(α). In addition, the absence of a $C(\alpha)^{13}C$ NMR signal around 250–300 ppm confirms the absence of any $Ru=C(\alpha)$ bond. Instead, one triplet at 163.4 ppm ($J_{P-C} = 8$ Hz) is due to a vinyl C(α) and 11 signals from 137 to 124 ppm which include acetylene C (in addition to phenyl) are also observed. Observing acetylene C in that region also indicates the acetylene binds to Ru, as shown in 16a.

For complete identification of **16a**, CO was added to this compound in C₆D₆ at room temperature (Scheme 8) as an analog to the formation of **12a** or **18a**. Two carbonyl triplets at 200.7 and 198.1 ppm indicate two CO bind to Ru. ¹³C{¹H} NMR supports formation of **21**, not **22**, in Scheme 8. A C(α) triplet observed at 145.2 ppm ($J_{P-C} = 4$ Hz) and a C(β) triplet is seen at 141.1 ppm but its J_{P-C} is not fully resolved. Eight phenyl singlets and two cumulene (C(γ) and C(δ)) singlets were observed between 131.4 and 99.1 ppm. In further confirmation of the ligand structure, protonation of **21** was performed with HCl, which liberated cumulene (not enyne), with formation of Ru(CO)₂Cl₂L₂ [38,39].

To test the catalytic viability of 16a, 20 equiv. of PhC=CH was added. In 30 min, all of 16a disappeared and three kinds of dimers appeared. Compounds 3a, 4a, and 5a were produced in the ratio of 76.5:5:18.5 which ratio is very similar to that from catalytic dimerization of phenylacetylene by 1 (Table 1). However in this dimerization, cumulene was not seen. This suggests that binding PhC=CH to 16a generates 12 or 15 to form *cis*- or *trans*-enyne, respectively, instead of 18; 16a is a precatalyst for dimerization.

3. Discussion

This work has shown that CO-free, π -electron rich Ru^{II} complexes have the ability to form C/C bonds at 23 °C. We

have not attempted to optimize conditions for best selectivity, but these would clearly be dependent on R group identity in RCCH. The lability of H on an sp carbon clearly contributes to the reactivity reported here, making vinylidene complex formation facile. Once the Ru=C bond is formed, insertion of this into a Ru–acetylide bond becomes possible. These reactions remain mechanistically obscure because a spectroscopically undetectable amount of catalyst precursor is converted onto the catalytic cycle.

A recent report [40] has provided deep insight into one mechanism of enyne formation catalyzed by one specific homogenous catalyst, $[C_6H_3(CH_2P'Bu_2)_2]Ir$, which is selective for *trans*-1,4-phenyl-but-3-ene-1-yne, **4a**. The deduced mechanism at this very sterically constrained catalyst is H–C(sp) oxidative addition, then Ir–H addition across the second alkyne C==C bond, then reductive coupling to form enyne. The high regioselectivity is concluded to result at the reductive coupling step, and the kinetically favored σ -vinyl complex (Ph on C_{α}) fails at C–C coupling, so the more slowly formed alternative (Ph or C_{β}) is on the path to the observed enyne regioisomer. Isotope effect measurements rule out a vinylidene intermediate. No cumulene was formed.

The diversity of products formed in the present work differentiates this from the (pincer) Ir catalyst performance described above, and indicates the likelihood of participation here by more reaction channels than for (pincer)Ir. The catalysts differ in that the Ru system begins with a hydride and involves Ru^{II} , so both (vs. an Ir^I nonhydride) favor Ru avoiding Ru^{IV} and thus favoring a vinylidene-forming initial step. The four 'Bu groups make the (pincer)Ir system more dominated by steric effects than the nonchelated $P'Pr_3$ groups on Ru; increased selectivity is thus favored for the former. In fact, our determination that a hydride–vinylidene is formed in a stoichiometric reaction shows this preference for a Ru^{II}–H reagent. In short, different complexes exhibit different catalytic performance by different influence of structure/composition/d-electron count (here d⁶ vs. d⁸).

4. Experimental

4.1. General

All reactions and manipulations were performed using standard Schlenk line and glovebox techniques under the prepurified argon. All solvents were dried and distilled from appropriate agents and stored in airtight solvent bulbs with Teflon closures under argon. RuCl₂- $(P^{i}Pr_{3})_{2}$ (=C=CHPh) was prepared by the reported procedure (using [RuCl₂(COD)]_x instead of [RuCl₂(*p*-cymene)]₂) [38]. All NMR solvents were also dried with appropriate agents and vacuum transferred and stored in the glovebox under argon. All NMR spectra were taken by Varian Gemini 2000 (300 MHz ¹H, 121 MHz ³¹P) spectrometers and Varian Inova (400 MHz ¹H, 161 MHz ³¹P) spectrometer and referenced by residual protio solvent peaks for ¹H or external standard (phosphoric acid) for ³¹P.

4.2. Preparation of $[RuHCl(P^{i}Pr_{3})_{2}]_{2}$, 1 [1]

1.2 mL of 'butylethylene (6.28 mmol) was slowly added into 2.9 g of [RuH(H₂)Cl(PⁱPr₃)₂] (6.28 mmol) with 40 mL of toluene via syringe. Color of the solution darkened. This solution was stirred for 40 min at room temperature, and volatiles were removed into a liquid N₂ trap. The red brown precipitate was dried in vacuo. ¹H NMR (300 MHz, C₆D₆): δ -24.2 (t, ²J_{P-H} = 32.8 Hz, Ru-H), 1.34 (dvt, J_{P-H} = ³J_{H-H} = 6.2 Hz, 18H, P(CHMe₂)₃), 1.36 (dvt, J_{P-H} = ³J_{H-H} = 6.2 Hz, 18H, P(CHMe₂)₃), 2.19 (m, 6H, P(CHMe₂)₃). ³¹P{¹H} NMR (162 MHz, C₆D₆, 20 °C): δ 84.1 (s).

4.3. Preparation of $RuH(N(SiMe_3)_2)(P^iPr_3)_2$, 2 [1]

Fifteen grams of $[RuHCl(P^iPr_3)_2]_2$ (16.4 µmol) was dissolved with 1 mL C₆D₆ in a Teflon sealed NMR tube. Then, 0.55 mg of LiN(SiMe₃)₂ (32.8 µmol) was added, giving an immediate reaction. ¹H NMR (300 MHz, C₆D₆): δ -20.8 (t, ${}^{2}J_{P-H} = 31$ Hz, 1H, Ru–*H*), 0.10 (s, 9H, NSi*Me*₃), 0.52 (s, 9H, NSi*Me*₃), 1.15 (dvt, $J_{P-H} = {}^{3}J_{H-H} = 7$ Hz, 18H, P(CH*Me*₂)₃), 1.21 (dvt, $J_{P-H} = {}^{3}J_{H-H} = 7$ Hz, 18H, P(CH*Me*₂)₃), 1.85 (m, 6H, P(CHMe₂)₃). ${}^{31}P{}^{1}H$ NMR (121 MHz, C₆D₆): δ 94.8 (s).

4.4. Dimerization of terminal alkynes catalyzed by 1

49.2 µmol of **1** was dissolved in 1.5 mL of C_6D_6 and equally divided among three NMR tubes equipped with a Teflon seal. 328 µmol of phenylacetylene, *tert*-butylacetylene, or trimethylsilylacetylene were added each tube at room temperature. By ¹H NMR, the progress of dimerization was monitored over time.

4.5. Dimerization of terminal alkynes catalyzed by 2

Compound **2** in 1.5 mL of C_6D_6 was prepared by addition of LiN(SiMe₃)₂ (49.2 µmol) to **1** (49.2 µmol) in C_6D_6 before it was used. Then, each 0.5 mL of solution (16.4 µmol) of **2** was placed in three NMR tubes equipped with a Teflon seal. 328 µmol of phenylacetylene, *tert*-butyl-acetylene, or trimethylsilylacetylene were added each tube at room temperature. By ¹H NMR, the progress of dimerization was monitored.

4.6. Preparation of $RuHCl(P^{i}Pr_{3})_{2}(CCHPh)$, 8a

Fifteen grams of $[\text{RuHCl}(\text{P}^{i}\text{Pr}_{3})_{2}]_{2}$ (16.4 µmol) was placed in an NMR tube equipped with a Teflon seal and dissolved in 0.5 mL of C₆D₆. 3.66 µL of phenylacetylene (32.8 µmol) was added via syringe. The color changed to dark green. This reaction was finished in 30 min. ¹H NMR (C₆D₆, 300 MHz): δ -12.48 (t, ²J_{P-H} = 17.4 Hz, RuH), δ 1.21 (m, P(CH(Me_2))_3), δ 2.49 (m, P(CH(Me_2))_3), δ 4.36 (t, ⁴J_{P-H} = 3.9 Hz, CCH(Ph)), δ 6.8–7.3 (m, CCH(Ph)). ³¹P{¹H} NMR (C₆D₆, 121 MHz): δ 51.0 (s).

4.7. Preparation of $RuHCl(P^iPr_3)_2(CCH^tBu)$, **8b**

Fifteen grams of $[\text{RuHCl}(\text{P}^{i}\text{Pr}_{3})_{2}]_{2}$ (16.4 µmol) was placed in an NMR tube equipped with a Teflon seal and dissolved in 0.5 mL of C₆D₆. 4 µL of *tert*-butylacetylene (32.8 µmol) was added via syringe. The color changed to dark green. This reaction was finished in 30 min. ¹H NMR (C₆D₆, 300 MHz): δ -13.79 (t, ²J_{P-H} = 18.3 Hz, RuH), δ 1.09 (s, CCH(^{*i*}Bu)), δ 1.26 (d, ³J_{H-H} = 6.3 Hz, P(CH(*Me*₂))₃), δ 1.30 (d, ³J_{H-H} = 7.2 Hz, P(CH(*Me*₂))₃), δ 2.67 (m, P(CH(Me_{2}))₃), δ 2.77 (t, ⁴J_{P-H} = 3.6 Hz, CCH(^{*i*}Bu)). ³¹P{¹H} NMR (C₆D₆, 121 MHz): δ 50.88 (s).

4.8. Preparation of $RuHCl(P'Pr_3)_2(CCHSiMe_3)$, 8c

Fifteen grams of $[RuHCl(P'Pr_3)_2]_2$ (16.4 µmol) was placed in an NMR tube equipped with a Teflon seal and dissolved in 0.5 mL of C₆D₆. 4.7 µl of trimethylsilylacety-

lene (32.8 µmol) was added via syringe. Color changed to light red brown. This reaction was finished in 30 min. ¹H NMR (C₆D₆, 300 Hz): δ –15.09 (t, ²J_{P-H} = 18.2 Hz, Ru*H*), δ 0.15 (s, CCHSi(*Me*₃)), δ 1.28 (m, P(CH(*Me*₂))₃), δ 2.63 ppm (m, P(CH(Me_2))_3), δ 2.41 (t, ⁴J_{P-H} = 3.3 Hz, CCHSi(Me₃)). ³¹P{¹H} NMR (C₆D₆, 121 Hz): δ 51.00 (s).

4.9. cis-PhCH=CHCCPh (3a) [13]

¹H NMR (C₆D₆, 300 MHz): δ 6.39 (d, ³J_{H-H} = 12 Hz, =CH), δ 5.77 (d, ³J_{H-H} = 12 Hz, =CH). δ 8.10–6.80 (m, Ph).

4.10. trans-PhCH=CHCCPh (4a) [13]

¹H NMR (C₆D₆, 300 MHz): δ 6.29 (d, ³J_{H-H} = 19.9 Hz, =CH), δ 8.10–6.80 (m, Ph).

4.11. $CH_2C(Ph)(CCPh)$ (5a) [12]

¹H NMR (C₆D₆, 300 MHz): δ 5.69 (s, =C*H*H), δ 5.74 (s, =C*HH*). δ 8.10–6.80 (m, Ph).

4.12. cis-^tBuHCCHCC^tBu (**3b**)

¹H NMR (C₆D₆, 300 MHz): δ 1.18 (s, ^{*t*}Bu), δ 1.24 (s, ^{*t*}Bu), 5.46 ppm (d, ³J_{H-H} = 12.3 Hz, =CH), δ 5.56 (d, ³J_{H-H} = 12.3 Hz, =CH).

4.13. $CH_2C({}^tBu)(CC{}^tBu)$ (5b)

¹H NMR (C₆D₆, 300 MHz): δ 1.17 (s, ^{*t*}Bu), δ 1.19 (s, ^{*t*}Bu), δ 5.11 (d, ²J_{H-H} = 1.5 Hz, =C*H*H), δ 5.33 (d, ²J_{H-H} = 1.5 Hz, =CH*H*).

4.14. $cis-({}^{t}Bu)HCCCCH({}^{t}Bu)$ (6b)

¹H NMR (C₆D₆, 300 MHz): δ 1.07 (s, ^{*t*}Bu), δ 5.51 (s, =CH).

4.15. $cis-Me_3SiHCCHCCSiMe_3$ (3c)

¹H NMR (C₆D₆, 300 MHz): δ 0.15 (s, *Me*₃Si), δ 0.22 (s, *Me*₃Si), δ 6.00 (d, ³*J*_{H-H} = 15.3 Hz, =C*H*), δ 6.22 (d, ³*J*_{H-H} = 15.3 Hz, =C*H*).

4.16. $CH_2C(SiMe_3)(CCSiMe_3)$ (5c)

¹H NMR (C₆D₆, 300 MHz): δ 0.12 (s, *Me*₃Si), δ 0.17 (s, *Me*₃Si), δ 5.54 (d, ²*J*_{H-H} = 2.0 Hz, =C*H*H), δ 6.10 (d, ²*J*_{H-} H = 1.7 Hz, =CH*H*).

4.17. $cis-(Me_3Si)HCCCCH(SiMe_3)$ (6c)

¹H NMR (C₆D₆, 300 MHz): δ 1.22 (s, *Me*₃Si), δ 6.36 (s, =C*H*).

4.18. Preparation of $RuCl(P^iPr_3)_2(\eta^3CCHPh(CCPh))$ (16a)

Thirty-six milligrams of LiCCPh (340 µmol) was added into the solution of 0.2 g of $\text{RuCl}_2(\text{P}^{\prime}\text{Pr}_3)_2(\text{CCHPh})$ (340 µmol) in 30 mL of benzene. After 2 days stirring, volatiles were removed by high vacuum with a liquid N₂ trap. The crude compound was dissolved in pentane and filtered to remove LiCl. Pentane was removed in vacuo. This compound was washed with 10 ml of MeOH, three times and dried. 0.13 g of the dark reddish brown product (56%) was collected. ¹H NMR (400 MHz, C_6D_6): 1.12 (dvt, $J_{P-H} = J_{H-H} = 6$ Hz, 18H, P(CHMe₂)₃), 1.18 (dvt, $J_{P-H} = {}^{3}J_{H-H} = 6$ Hz, 18H, P(CHMe₂)₃), 2.14 (m, 6H, $P(CHMe_2)_3)$. 7.01 (t, $J_{H-H} = 7.6$ Hz, H, Ph), 7.1 (t, $J_{\text{H-H}} = 7.6 \text{ Hz}, \text{ H}, Ph$), 7.21 (t, $J_{\text{H-H}} = 7.6 \text{ Hz}, 2\text{H}, Ph$), 7.3 (t, $J_{H-H} = 7.6$ Hz, 2H, Ph), 7.54 (s, H, CHPh), 8.00 (d, $J_{\text{H-H}} = 7.6 \text{ Hz}, 2\text{H}, Ph$), 8.27 (d, $J_{\text{H-H}} = 7.6 \text{ Hz}, 2\text{H}, Ph$). ³¹P{¹H} NMR (161 MHz, C₆D₆): δ 27.6 (s). ¹³C{¹H} NMR (100.6 MHz, C_6D_6): 163.4 (t, $J_{P-C} = 8$ Hz), 137.3, 133.1, 131.4, 129.3, 128.4, 128.1, 127.9, 127.3, 125.6, 125.3, 124.2.

4.19. Reaction of 16a with CO

Twenty milligrams of 16a (30 µmol) was placed with 0.5 mL of C_6D_6 in the NMR tube equipped with Teflon seal stopcock. This solution was freeze-pump-thawdegassed three times in liquid N2 and the headspace evacuated. 1 atm. of CO was added. The color changed immediately to pale yellow. ¹H NMR (400 MHz, C₆D₆): 1.14 (dvt, $J_{P-H} = J_{H-H} = 6$ Hz, 18H, P(CHMe₂)₃), 1.34 (dvt, $J_{P-H} = {}^{3}J_{H-H} = 6$ Hz, 18H, P(CHMe₂)₃), 2.66 (m, 6H, P(CHMe₂)₃). 6.96–7.13 (m, 4H, Ph), 7.33 (t, $J_{\rm H-H} = 7.6$ Hz, 2H, Ph), 7.7 (d, $J_{\rm H-H} = 7.6$ Hz, 2H, Ph), 8.17 (s, H, CHPh), 8.32 (d, $J_{H-H} = 7.6$ Hz, 2H, Ph). ³¹P{¹H} NMR (161 MHz, C₆D₆): δ 35.11 (s). ¹³C{¹H} NMR (100.6 MHz, C_6D_6): 200.7 (t, $J_{P-C} = 10$ Hz), 198.2 (t, $J_{P-C} = 10$ Hz), 145.1 (t, $J_{P-C} = 4$ Hz), 141.1 (t, J_{P-C} not resolved), 131.4, 128.7, 128.5, 128.4, 128.1, 127.9, 127.1, 126.3, 103.4, 99.1.

4.20. Reaction of $RuCl(P^iPr_3)_2(\eta^1CCHPh(CCPh))(CO)_2$ with HCl

Twenty milligrams of 16a (30 µmol) was placed with 0.5 mL of C_6D_6 in the NMR tube equipped with Teflon seal stopcock. This solution was freeze-pump-thawdegassed three times in liquid N2 and the headspace evacuated. 1 atm. of CO was added. Color change was immediate. After 1 day, 30 µL of HCl (1 M in Et₂O, 30 µmol) was syringe. added bv а $Ru(CO)_2Cl_2(P'Pr_3)_2$ and PhHCCCCHPh were produced in 1 h. Ru(CO)₂Cl₂(P^{*i*}Pr₃)₂: ¹H NMR (400 MHz, C_6D_6): 1.25 (vq, J = 6 Hz, 36H, $P(CHMe_{2})_{3}$, 2.78 (m, 6H, $P(CHMe_{2})_{3}$). ³¹P{¹H} NMR (161 MHz, C_6D_6): δ 38.67 (s). PhHCCCCHPh: ¹H NMR

(400 MHz, C₆D₆): 6.4 (s, 2H, C*H*Ph), 6.92–7.46 (m, 10H, CH*Ph*).

4.21. Dimerization of terminal alkynes catalyzed by 16a

Twenty-eight micromoles of **16a** was dissolved in 0.5 mL of C_6D_6 in an NMR tube equipped with a Teflon seal. 560 µmol of phenylacetylene was added. By ¹H NMR, the progress of dimerization was monitored. The ratio of dimers (**3a**, **4a**, and **5a**) was 76.5:5:18.5.

Acknowledgement

This work was supported by the National Science Foundation (NSF) under Grant No. CHE0544829.

References

- J.N. Coalter III, J.C. Huffman, W.E. Streib, K.G. Caulton, Inorg. Chem. 39 (2000) 3757.
- [2] J.N. Coalter III, J.C. Bollinger, J.C. Huffman, U. Werner-Zwanziger, K.G. Caulton, E.R. Davidson, H. Gerard, E. Clot, O. Eisenstein, New J. Chem. 24 (2000) 9.
- [3] D. Huang, J.C. Bollinger, W.E. Streib, K. Folting, V. Young Jr., O. Eisenstein, K.G. Caulton, Organometallics 19 (2000) 2281.
- [4] H. Gerard, E. Clot, C. Giessner-Prettre, K.G. Caulton, E.R. Davidson, O. Eisenstein, Organometallics 19 (2000) 2291.
- [5] J.N. Coalter III, J.C. Huffman, K.G. Caulton, Organometallics 19 (2000) 3569.
- [6] J.N. Coalter III, W.E. Streib, K.G. Caulton, Inorg. Chem. 39 (2000) 3749.
- [7] M. Olivan, E. Clot, O. Eisenstein, K.G. Caulton, Organometallics 17 (1998) 3091.
- [8] M. Olivan, E. Clot, O. Eisenstein, K.G. Caulton, Organometallics 17 (1998) 897.
- [9] J. Wolf, W. Stueer, C. Gruenwald, O. Gevert, M. Laubender, H. Werner, Eur. J. Inorg. Chem. (1998) 1827.
- [10] J. Wolf, W. Stuer, C. Grunwald, H. Werner, P. Schwab, M. Schulz, Angew. Chem., Int. Ed. 37 (1998) 1124.
- [11] M. Olivan, O. Eisenstein, K.G. Caulton, Organometallics 16 (1997) 2227.
- [12] A.K. Dash, M.S. Eisen, Org. Lett. 2 (2000) 737.
- [13] C.S. Yi, N. Liu, Organometallics 15 (1996) 3968.
- [14] Y. Wakatsuki, H. Yamazaki, N. Kumegawa, P.S. Johar, Bull. Chem. Soc. Jpn. 66 (1993) 987.
- [15] Y. Wakatsuki, H. Yamazaki, N. Kumegawa, T. Satoh, J.Y. Satoh, J. Am. Chem. Soc. 113 (1991) 9604.
- [16] Y. Wakatsuki, T. Satoh, H. Yamazaki, Chem. Lett. (1989) 1585.
- [17] T. Katagiri, H. Tsurugi, A. Funayama, T. Satoh, M. Miura, Chem. Lett. 36 (2007) 830.
- [18] M. Bassetti, C. Pasquini, A. Raneri, D. Rosato, J. Org. Chem. 72 (2007) 4558.
- [19] X. Chen, P. Xue, H.H.Y. Sung, I.D. Williams, M. Peruzzini, C. Bianchini, G. Jia, Organometallics 24 (2005) 4330.
- [20] C. Bianchini, P. Frediani, D. Masi, M. Peruzzini, F. Zanobini, Organometallics 13 (1994) 4616.
- [21] C. Bruneau, P.H. Dixneuf, Angew. Chem., Int. Ed. 45 (2006) 2176.
- [22] C. Bianchini, M. Peruzzini, F. Zanobini, P. Frediani, A. Albinati, J. Am. Chem. Soc. 113 (1991) 5453.
- [23] Y. Wakatsuki, H. Yamazaki, J. Organomet. Chem. 500 (1995) 349.
- [24] S. Pavlik, C. Gemel, C. Slugovc, K. Mereiter, R. Schmid, K. Kirchner, J. Organomet. Chem. 617–618 (2001) 301.
- [25] C.S. Yi, N. Liu, Synlett (1999) 281.

1673

- [26] H. Katayama, H. Yari, M. Tanaka, F. Ozawa, Chem. Commun. (2005) 4336.
- [27] K. Melis, D. De Vos, P. Jacobs, F. Verpoort, J. Organomet. Chem. 659 (2002) 159.
- [28] L. Dahlenburg, K.M. Frosin, S. Kerstan, D. Werner, J. Organomet. Chem. 407 (1991) 115.
- [29] M. Bassetti, S. Marini, J. Diaz, M.P. Gamasa, J. Gimeno, Y. Rodriguez-Alvarez, S. Garcia-Granda, Organometallics 21 (2002) 4815.
- [30] G. Jia, A.L. Rheingold, D.W. Meek, Organometallics 8 (1989) 1378.
- [31] M.A. Esteruelas, J. Herrero, A.M. Lopez, M. Olivan, Organometallics 20 (2001) 3202.
- [32] H. Yamazaki, J. Chem. Soc., Chem. Commun. (1976) 841.
- [33] D. Huang, M. Olivan, J.C. Huffman, O. Eisenstein, K.G. Caulton, Organometallics 17 (1998) 4700.

- [34] B.M. Trost, M.T. Sorum, C. Chan, G. Ruehter, J. Am. Chem. Soc. 119 (1997) 698.
- [35] D. Huang, K. Folting, K.G. Caulton, J. Am. Chem. Soc. 121 (1999) 10318.
- [36] C. Gruenwald, O. Gevert, J. Wolf, P. Gonzalez-Herrero, H. Werner, Organometallics 15 (1996) 1960.
- [37] H. Katayama, F. Ozawa, Organometallics 17 (1998) 5190.
- [38] H.-F. Chow, X.-P. Cao, M.-k. Leung, J. Chem. Soc., Perkin Trans. 1 (1995) 193.
- [39] M. Ogasawara, S.A. Macgregor, W.E. Streib, K. Folting, O. Eisenstein, K.G. Caulton, J. Am. Chem. Soc. 118 (1996) 10189.
- [40] R. Ghosh, X. Zhang, P. Achord, T.J. Emge, K. Krogh-Jespersen, A.S. Goldman, J. Am. Chem. Soc. 129 (2007) 853.